organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5,5'-Diethyl-2,2'-(triazene-1,3-diyl)di-1.3.4-thiadiazole

Hai-Su Zeng, Lu-Na Han, Si-shun Kang, Hai-lin Li and Hai-bo Wang*

College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China Correspondence e-mail: wanghaibo@njut.edu.cn

Received 14 October 2008; accepted 17 October 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.009 Å; R factor = 0.072; wR factor = 0.178; data-to-parameter ratio = 16.3.

In the molecule of the title compound, $C_8H_{11}N_7S_2$, the conformation about the N=N bond is trans and the thiadiazole rings are oriented at a dihedral angle of 2.92 (3)°. In the crystal structure, intermolecular $N-H\cdots S$ hydrogen bonds link the molecules into chains. There are $\pi - \pi$ contacts between the thiadiazole rings [centroid-to-centroid distances = 3.699(3) and 3.720(2) Å].

Related literature

For general background, see: Bach et al. (1996); Clark & Hester (1991); Taniike et al. (1996). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

 $C_8H_{11}N_7S_2$ $M_r = 269.36$ Monoclinic, $P2_1/c$

a = 12.188 (2) Å

c = 12.790 (3) Å

b = 9.1460 (18) Å

 $\beta = 110.99 \ (3)^{\circ}$ V = 1331.1 (5) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Enraf–Nonius CAD-4	
diffractometer	
Absorption correction: ψ scan	
(North et al., 1968)	
$T_{\min} = 0.926, T_{\max} = 0.962$	
2431 measured reflections	

Refinement

 $\begin{array}{l} R[F^2 > 2\sigma(F^2)] = 0.072 \\ wR(F^2) = 0.178 \end{array}$ 142 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.62 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.00 $\Delta \rho_{\rm min} = -1.06~{\rm e}~{\rm \AA}^{-3}$ 2320 reflections

 $\mu = 0.39 \text{ mm}^{-1}$ T = 294 (2) K

 $R_{\rm int} = 0.0047$

 $0.20 \times 0.10 \times 0.10$ mm

3 standard reflections frequency: 120 min intensity decay: none

2320 independent reflections

1468 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N5-H5A\cdots S2^{i}$	0.86	2.84	3.631 (4)	154
Symmetry code: (i) x	$-v + \frac{1}{2}, z - \frac{1}{2}$			

(i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2554).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bach, H., Anderle, K., Fuhrmann, Th. & Wendorff, J. H. (1996). J. Phys. Chem. 100, 4135-4140.
- Clark, R. J. H. & Hester, R. E. (1991). Advances in Materials Science Spectroscopy. New York: John Wiley & Sons.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Taniike, K., Matsumoto, T., Sato, T., Ozaki, Y., Nakashima, K. & Iriyama, K. (1996). J. Phys. Chem. 100, 15508-15516.

supplementary materials

Acta Cryst. (2008). E64, o2166 [doi:10.1107/S1600536808033941]

5,5'-Diethyl-2,2'-(triazene-1,3-diyl)di-1,3,4-thiadiazole

H.-S. Zeng, L.-N. Han, S. Kang, H. Li and H. Wang

Comment

The photophysical properties of azo compounds are of large interest in the development of nonlinear optical and optical data storage materials (Bach *et al.*, 1996; Taniike *et al.*, 1996; Clark & Hester, 1991). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (S1/N1/N2/C3/C4) and B (S2/N3/N4/C7/C8) are oriented at a dihedral angle of 2.92 (3)°. So, they are nearly coplanar.

In the crystal structure, intermolecular N—H···S hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure. The π - π contacts between the thiadiazole rings, Cg2···Cg2ⁱ and Cg2···Cg1ⁱⁱ [symmetry codes: (i) -x, 1 - y, -z; (ii) -x, -y, -z, where Cg1 and Cg2 are the centroids of the rings A (S1/N1/N2/C3/C4) and B (S2/N3/N4/C7/C8), respectively] may further stabilize the structure, with centroid–centroid distances of 3.699 (3) and 3.720 (2) Å, respectively.

Experimental

For the preparation of the title compound, 5-amino-1,3,4-thiadiazole (5 mmol) was dissolved by heating in concentrated HCl (50 ml) in a water bath, after which the solution was cooled to 268 K and a solution of sodium nitrite (2.5 mmol) in water (3.5 ml) was added dropwise with stirring. The resulting bright-yellow diazonium solution was allowed to stand in ice for 30 min, after which a saturated solution of sodium acetate (100 ml, pH = 5) was added. The precipitate was removed by filtration, and purified by crystallization from toluene. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.97 and 0.96 Å for methylene and methyl H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A partial packing diagram of the title compound.

 $F_{000} = 560$

 $D_{\rm x} = 1.344 {\rm Mg m}^{-3}$

Cell parameters from 25 reflections

Mo Kα radiation

 $\lambda = 0.71073 \text{ \AA}$

 $\mu = 0.39 \text{ mm}^{-1}$ T = 294 (2) K

Block, yellow

 $0.20\times0.10\times0.10~mm$

 $\theta = 9 - 12^{\circ}$

5,5'-Diethyl-2,2'-(triazene-1,3-diyl)di-1,3,4-thiadiazole

Crystal data

C₈H₁₁N₇S₂ $M_r = 269.36$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.188 (2) Å b = 9.1460 (18) Å c = 12.790 (3) Å β = 110.99 (3)° V = 1331.1 (5) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.005$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.3^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.8^{\circ}$
T = 294(2) K	$h = -14 \rightarrow 13$
$\omega/2\theta$ scans	$k = 0 \rightarrow 10$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 14$
$T_{\min} = 0.926, \ T_{\max} = 0.962$	3 standard reflections
2431 measured reflections	every 120 min
2320 independent reflections	intensity decay: none
1468 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.072$	H-atom parameters constrained
$wR(F^2) = 0.178$	$w = 1/[\sigma^2(F_o^2) + (0.06P)^2 + 3.61P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
2320 reflections	$\Delta \rho_{max} = 0.62 \text{ e } \text{\AA}^{-3}$
142 parameters	$\Delta \rho_{min} = -1.06 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	1.26701 (14)	0.49714 (19)	0.57391 (10)	0.0675 (5)
S2	0.96258 (11)	0.18590 (15)	0.56999 (10)	0.0488 (4)
N1	1.3578 (5)	0.6450 (6)	0.4508 (4)	0.0804 (16)
N2	1.2634 (4)	0.5731 (5)	0.3737 (3)	0.0548 (11)
N3	0.7840 (4)	0.0373 (5)	0.4403 (3)	0.0554 (12)
N4	0.8301 (3)	0.1075 (5)	0.3694 (3)	0.0512 (11)
N5	0.9719 (4)	0.2610 (5)	0.3544 (3)	0.0515 (11)
H5A	0.9482	0.2556	0.2825	0.062*
N6	1.1099 (3)	0.4124 (5)	0.3558 (3)	0.0463 (10)
N7	1.0651 (3)	0.3422 (4)	0.4200 (3)	0.0417 (9)
C1	1.5073 (6)	0.6346 (8)	0.7641 (5)	0.092
H1B	1.5528	0.7039	0.8189	0.138*
H1C	1.5570	0.5558	0.7586	0.138*
H1D	1.4453	0.5968	0.7861	0.138*
C2	1.4558 (5)	0.7082 (7)	0.6535 (5)	0.073
H2A	1.5195	0.7411	0.6308	0.088*
H2B	1.4135	0.7943	0.6626	0.088*
C3	1.3715 (6)	0.6141 (9)	0.5586 (5)	0.090 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C4	1.2070 (4)	0.4920 (6)	0.4245 (4)	0.0466 (12)
C5	0.7047 (6)	-0.0851 (8)	0.6080 (5)	0.0790 (19)
H5B	0.6879	-0.1221	0.6709	0.119*
H5C	0.7149	-0.1654	0.5640	0.119*
H5D	0.6406	-0.0251	0.5629	0.119*
C6	0.8141 (5)	0.0036 (7)	0.6486 (4)	0.0589 (14)
H6B	0.8787	-0.0567	0.6950	0.071*
H6C	0.8043	0.0837	0.6941	0.071*
C7	0.8436 (4)	0.0651 (6)	0.5493 (4)	0.0509 (13)
C8	0.9231 (4)	0.1912 (6)	0.4186 (4)	0.0465 (12)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0757 (10)	0.0889 (12)	0.0315 (7)	-0.0236 (9)	0.0116 (6)	0.0029(7)
S2	0.0510(7)	0.0616 (8)	0.0329 (6)	-0.0063 (7)	0.0140 (5)	-0.0044 (6)
N1	0.073 (3)	0.099 (4)	0.062 (3)	-0.029 (3)	0.016 (3)	0.013 (3)
N2	0.053 (3)	0.066 (3)	0.043 (2)	-0.006 (2)	0.015 (2)	0.011 (2)
N3	0.045 (2)	0.074 (3)	0.049 (3)	-0.006 (2)	0.019 (2)	-0.012 (2)
N4	0.044 (2)	0.074 (3)	0.037 (2)	-0.005 (2)	0.0164 (19)	-0.010 (2)
N5	0.052 (3)	0.069 (3)	0.033 (2)	0.004 (2)	0.014 (2)	0.002 (2)
N6	0.049 (2)	0.057 (3)	0.032 (2)	-0.002 (2)	0.0141 (19)	0.0018 (19)
N7	0.038 (2)	0.049 (2)	0.036 (2)	0.0040 (18)	0.0114 (18)	-0.0001 (18)
C1	0.092	0.092	0.092	0.000	0.033	0.000
C2	0.073	0.073	0.073	0.000	0.026	0.000
C3	0.083 (4)	0.126 (6)	0.047 (3)	-0.045 (4)	0.008 (3)	0.010 (4)
C4	0.047 (3)	0.059 (3)	0.034 (2)	0.007 (3)	0.015 (2)	0.005 (2)
C5	0.084 (4)	0.095 (5)	0.065 (4)	-0.030 (4)	0.035 (3)	-0.004 (4)
C6	0.067 (3)	0.072 (4)	0.044 (3)	-0.019 (3)	0.029 (3)	-0.012 (3)
C7	0.048 (3)	0.061 (3)	0.043 (3)	-0.004 (3)	0.015 (2)	-0.010 (2)
C8	0.045 (3)	0.053 (3)	0.035 (2)	0.001 (2)	0.007 (2)	-0.006 (2)

Geometric parameters (Å, °)

S1—C3	1.728 (6)	C1—H1B	0.9600
S1—C4	1.786 (5)	C1—H1C	0.9600
S2—C7	1.766 (5)	C1—H1D	0.9600
S2—C8	1.820 (5)	C2—C3	1.541 (8)
N1—N2	1.384 (6)	C2—H2A	0.9700
N1—C3	1.358 (7)	C2—H2B	0.9700
N2—C4	1.328 (6)	C4—N6	1.399 (6)
N3—N4	1.384 (6)	C5—C6	1.487 (7)
N3—C7	1.346 (6)	С5—Н5В	0.9600
N4—C8	1.325 (6)	С5—Н5С	0.9600
N5—N7	1.365 (5)	C5—H5D	0.9600
N5—C8	1.338 (6)	C6—C7	1.544 (7)
N5—H5A	0.8600	С6—Н6В	0.9700
N6—N7	1.306 (5)	С6—Н6С	0.9700
C1—C2	1.486 (7)		

C3—S1—C4	86.0 (3)	N1—C3—S1	114.6 (5)
C7—S2—C8	88.1 (2)	C2—C3—S1	124.5 (5)
C3—N1—N2	113.1 (5)	N2-C4-N6	116.9 (4)
C4—N2—N1	111.2 (4)	N2—C4—S1	115.1 (4)
C7—N3—N4	113.3 (4)	N6—C4—S1	128.0 (4)
C8—N4—N3	115.8 (4)	С6—С5—Н5В	109.5
N7—N5—H5A	125.1	С6—С5—Н5С	109.5
C8—N5—N7	109.7 (4)	H5B—C5—H5C	109.5
C8—N5—H5A	125.1	C6—C5—H5D	109.5
N7—N6—C4	108.2 (4)	H5B—C5—H5D	109.5
N6—N7—N5	108.9 (4)	H5C—C5—H5D	109.5
C2—C1—H1B	109.5	C5—C6—C7	110.8 (4)
C2—C1—H1C	109.5	С5—С6—Н6В	109.5
H1B—C1—H1C	109.5	С7—С6—Н6В	109.5
C2—C1—H1D	109.5	С5—С6—Н6С	109.5
H1B—C1—H1D	109.5	С7—С6—Н6С	109.5
H1C—C1—H1D	109.5	H6B—C6—H6C	108.1
C1—C2—C3	115.6 (6)	N3—C7—C6	125.8 (5)
C1—C2—H2A	108.4	N3—C7—S2	112.5 (4)
C3—C2—H2A	108.4	C6—C7—S2	121.7 (4)
C1—C2—H2B	108.4	N4—C8—N5	118.5 (4)
C3—C2—H2B	108.4	N4—C8—S2	110.2 (4)
H2A—C2—H2B	107.4	N5—C8—S2	131.3 (4)
N1—C3—C2	119.3 (6)		
C3—N1—N2—C4	1.1 (8)	N4—N3—C7—C6	179.9 (5)
N2—N1—C3—C2	-167.6 (6)	N4—N3—C7—S2	0.9 (6)
N2—N1—C3—S1	-1.5 (9)	C5—C6—C7—N3	-3.6 (8)
C1—C2—C3—N1	-153.7 (7)	C5—C6—C7—S2	175.3 (4)
C1—C2—C3—S1	41.7 (9)	C8—S2—C7—N3	-0.6 (4)
C4—S1—C3—N1	1.1 (6)	C8—S2—C7—C6	-179.6 (5)
C4—S1—C3—C2	166.4 (7)	N3—N4—C8—N5	179.6 (4)
C7—N3—N4—C8	-0.9 (6)	N3—N4—C8—S2	0.4 (5)
N1—N2—C4—N6	-179.5 (4)	N7—N5—C8—N4	179.4 (4)
N1—N2—C4—S1	-0.3 (6)	N7—N5—C8—S2	-1.6 (6)
C3—S1—C4—N2	-0.5 (5)	C7—S2—C8—N4	0.1 (4)
C3—S1—C4—N6	178.7 (5)	C7—S2—C8—N5	-178.9 (5)
N2-C4-N6-N7	-178.9 (4)	C4—N6—N7—N5	-178.5 (4)
S1—C4—N6—N7	1.9 (6)	C8—N5—N7—N6	-178.4 (4)

Hydrogen-bond geometry (Å, °)

			_ /	
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N5—H5A···S2 ⁱ	0.86	2.84	3.631 (4)	154
Symmetry codes: (i) $x, -y+1/2, z-1/2$.				

Fig. 1

Fig. 2